首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4509篇
  免费   744篇
  国内免费   328篇
化学   1481篇
晶体学   41篇
力学   1415篇
综合类   60篇
数学   724篇
物理学   1860篇
  2024年   4篇
  2023年   46篇
  2022年   104篇
  2021年   181篇
  2020年   220篇
  2019年   133篇
  2018年   153篇
  2017年   166篇
  2016年   229篇
  2015年   153篇
  2014年   244篇
  2013年   352篇
  2012年   263篇
  2011年   301篇
  2010年   244篇
  2009年   268篇
  2008年   220篇
  2007年   228篇
  2006年   218篇
  2005年   214篇
  2004年   171篇
  2003年   183篇
  2002年   137篇
  2001年   108篇
  2000年   135篇
  1999年   102篇
  1998年   104篇
  1997年   98篇
  1996年   73篇
  1995年   72篇
  1994年   76篇
  1993年   73篇
  1992年   52篇
  1991年   47篇
  1990年   43篇
  1989年   25篇
  1988年   26篇
  1987年   18篇
  1986年   14篇
  1985年   21篇
  1984年   8篇
  1983年   7篇
  1982年   13篇
  1981年   3篇
  1980年   4篇
  1979年   6篇
  1978年   4篇
  1976年   2篇
  1971年   4篇
  1957年   6篇
排序方式: 共有5581条查询结果,搜索用时 31 毫秒
61.
《化学:亚洲杂志》2017,12(20):2749-2762
A novel class of β‐functionalized push–pull zinc opp ‐dibenzoporphyrins were designed, synthesized, and utilized as sensitizers for dye‐sensitized solar cells. Spectral, electrochemical, and computational studies were systematically performed to evaluate their spectral coverage, redox behavior, and electronic structures. These porphyrins displayed much broader spectral coverage and more facile oxidation upon extension of the π conjugation. Free‐energy calculations and femtosecond transient absorption studies (charge injection rate in the range of 1011 s−1) suggested efficient charge injection from the excited singlet state of the porphyrin to the conduction band of TiO2. The power conversion efficiency (η ) of YH3 bearing acrylic acid linkers (η =5.9 %) was close to that of the best ruthenium dye N719 (η =7.4 %) under similar conditions. The superior photovoltaic performance of YH3 was attributed to its higher light‐harvesting ability and more favorable electron injection and collection, as supported by electrochemical impedance spectral studies. This work demonstrates the exceptional potential of benzoporphyrins as sensitizers for dye‐sensitized solar cells.  相似文献   
62.
The aim of this research was to provide crucial and useful data about the selection of the optimization criteria of supercritical carbon dioxide extraction of alfalfa at a quarter-technical plant. The correlation between more general output, including total phenolics and flavonoids content, and a more specified composition of polar constituents was extensively studied. In all alfalfa extracts, polar bioactive constituents were analyzed by both spectrometric (general output) and chromatographic (detailed output) analyses. Eight specific phenolic acids and nine flavonoids were determined. The most dominant were salicylic acid (221.41 µg g−1), ferulic acid (119.73 µg g−1), quercetin (2.23 µg g−1), and apigenin (2.60 µg g−1). For all seventeen analyzed compounds, response surface methodology and analysis of variance were used to provide the optimal conditions of supercritical fluid extraction for each individual constituent. The obtained data have shown that eight of those compounds have a similar range of optimal process parameters, being significantly analogous for optimization based on total flavonoid content.  相似文献   
63.
Solid electrolytes, such as perovskite Li3xLa2/1−xTiO3, LixLa(1−x)/3NbO3 and garnet Li7La3Zr2O12 ceramic oxides, have attracted extensive attention in lithium-ion battery research due to their good chemical stability and the improvability of their ionic conductivity with great potential in solid electrolyte battery applications. These solid oxides eliminate safety issues and cycling instability, which are common challenges in the current commercial lithium-ion batteries based on organic liquid electrolytes. However, in practical applications, structural disorders such as point defects and grain boundaries play a dominating role in the ionic transport of these solid electrolytes, where defect engineering to tailor or improve the ionic conductive property is still seldom reported. Here, we demonstrate a defect engineering approach to alter the ionic conductive channels in LixLa(1−x)/3NbO3 (x = 0.1~0.13) electrolytes based on the rearrangements of La sites through a quenching process. The changes in the occupancy and interstitial defects of La ions lead to anisotropic modulation of ionic conductivity with the increase in quenching temperatures. Our trial in this work on the defect engineering of quenched electrolytes will offer opportunities to optimize ionic conductivity and benefit the solid electrolyte battery applications.  相似文献   
64.
Orange pomace (OP) is a solid waste produced in bulk as a byproduct of the orange juice industry and accounts for approximately 50% of the quantity of the fruits processed into juice. In numerous literature references there is information about diverse uses of orange pomace for the production of high-added-value products including production of natural antioxidant and antimicrobial extracts rich in polyphenols and flavonoids which can substitute the hazardous chemical antioxidants/antimicrobials used in agro-food and cosmetics sectors. In this work and for the first time, according to our knowledge, the eco-friendly aqueous vacuum microwave assisted extraction of orange pomace was investigated and optimized at real industrial scale in order to produce aqueous antioxidant/antimicrobial extracts. A Response Surface Optimization methodology with a multipoint historical data experimental design was employed to obtain the optimal values of the process parameters in order to achieve the maximum rates of extraction of OP total polyphenols and/or total flavonoids for economically optimum production at industrial scale. The three factors used for the optimization were: (a) microwave power (b) water to raw pomace ratio and (c) extraction time. Moreover, the effectiveness and statistical soundness of the derived cubic polynomial predictive models were verified by ANOVA.  相似文献   
65.
A novel synthetic strategy gives reversible cross‐linked polymeric materials with tunable fluorescence properties. Dimaleimide‐substituted tetraphenylethene (TPE‐2MI), which is non‐emissive owing to the photo‐induced electron transfer (PET) between maleimide (MI) and tetraphenylethene (TPE) groups, was used to cross‐link random copolymers of methyl (MM), decyl (DM) or lauryl (LM) methacrylate with furfuryl methacrylate (FM). The mixture of copolymer and TPE‐2MI in DMF showed reversible fluorescence with “on/off” behavior depending on the Diels–Alder (DA)/retro‐DA process, which is easily adjusted by temperature. At high temperatures, the retro‐DA reaction is dominant, and the fluorescence is quenched by the photo‐induced electron transfer (PET) mechanism. In contrast, at low temperatures, the emission recovers as the DA reaction takes over. A transparent PMFM/TPE‐2MI polymer film was prepared which shows an accurate response to the external temperature and exhibited tunable fluorescent “turn on/off” behavior. These results suggest the possible application in areas including information security and transmission. An example of invisible/visible writing is given.  相似文献   
66.
Fluorescent molecular rotors have been used for measurements of local mobility on molecular length scales, for example to determine viscosity, and for the visualization of contact between two surfaces. In the present work, we deepen our insight into the excited-state deactivation kinetics and mechanics of dicyanodihydrofuran-based molecular rotors. We extend the scope of the use of this class of rotors for contact sensing with a red-shifted member of the family. This allows for contact detection with a range of excitation wavelengths up to ∼600 nm. Steady-state fluorescence shows that the fluorescence quantum yield of these rotors depends not only on the rigidity of their environment, but – under certain conditions – also on its polarity. While excited state decay via rotation about the exocyclic double bond is rapid in nonpolar solvents and twisting of a single bond allows for fast decay in polar solvents, the barriers for both processes are significant in solvents of intermediate polarity. This effect may also occur in other molecular rotors, and it should be considered when applying such molecules as local mobility probes.  相似文献   
67.
68.
Polysaccharide nanoparticles are promising materials in the wide range of disciplines such as medicine, nutrition, food production, agriculture, material science and others. They excel not only in their non‐toxicity and biodegradability but also in their easy preparation. As well as inorganic particles, a protein corona (PC) around polysaccharide nanoparticles is formed in biofluids. Moreover, it has been considered that the overall response of the organism to nanoparticles presence depends on the PC. This review summarises scientific publications about the structural chemistry of polysaccharide nanoparticles and their impact on theranostic applications. Three strategies of implementation of the PC in theranostics have been discussed: I) Utilisation of the PC in therapy; II) How the composition of the PC is analysed for specific disease markers; III) How the formed PC can interact with the immune system and enhances the immunomodulation or immunoelimination. Thus, the findings from this review can contribute to improve the design of drug delivery systems. However, it is still necessary to elucidate the mechanisms of nano‐bio interactions and discover new connections in nanoscale research.  相似文献   
69.
The precise release of drugs is essential to improve cancer therapeutic efficacy. In this work, a tandem responsive strategy was developed based on a triple-layered metal-organic framework (MOF) hybrid. The MOF nanoprobe was stepwise fabricated with a telomerase-responsive inner, a pH-sensitive MOF filling and H2O2-responsive coordination complex shell of Fe3+ and eigallocatechin gallate (EGCG). In the tumor microenvironment, the shell was dissociated by endogenous H2O2 and simultaneously produced highly reactive hydroxyl radicals by a Fenton reaction. Meanwhile, the released EGCG could downregulate the expression of P-glycoprotein responsible for drug resistance. After the dissociation of the framework by protons, telomerase could trigger the release of the drug from the DNA duplex on the exposed inner shell. By integrating confined drug release, inhibited efflux pump and chemodynamic therapy, the all-in-one chemotherapy strategy was identified with enhanced therapeutic efficacy in drug-resistant cancer cells.  相似文献   
70.
Biodegradable primary batteries, also known as transient batteries, are essential to realize autonomous biodegradable electronic devices with high performance and advanced functionality. In this work, magnesium, copper, iron, and zinc – metals that exist as trace elements in the human body – were tested as materials for biomedical transient electronic devices. Different full cell combinations of Mg and X (where X = Cu, Fe, and Zn and the anodized form of the metals) with phosphate buffered saline (PBS) as electrolyte were studied. To form the cathodes, metal foils were anodized galvanostatically at a current density of 2.0 mA cm−2 for 30 mins. Electrochemical measurements were then conducted for each electrode combination to evaluate full cell battery performance. Results showed that the Mg−Cuanodized chemistry has the highest power density at 0.99 mW/cm2. Nominal operating voltages of 1.26 V for the first 0.50 h and 0.63 V for the next 3.7 h were observed for Mg−Cuanodized which was discharged at a current density of 0.70 mA cm−2. Among the materials tested, Mg−Cuanodized exhibited the best discharge performance with an average specific capacity of 2.94 mAh cm−2, which is comparable to previous reports on transient batteries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号